音容笑貌,两臻佳妙,人工智能AI换脸(deepfake)技术复刻《卡萨布兰卡》名场面(Python3.10)

    影史经典《卡萨布兰卡》是大家耳熟能详的传世名作,那一首壮怀激烈,激奋昂扬的马赛曲,应当是通片最为激动人心的经典桥段了,本次我们基于faceswap和so-vits库让AI川普复刻美国演员保罗·亨雷德高唱《马赛曲》的名场面。    配置人脸替换DeepFakes项目    关于人脸替换,业内鼎鼎有名的deepfakes代表了这个人工智能细分领域的最高水平,旗下的faceswap库正好适合这种视频二次创作的场景。  &nb......

音容笑貌,两臻佳妙,人工智能AI换脸(deepfake)技术复刻《卡萨布兰卡》名场面(Python3.10)

声音好听,颜值能打,基于PaddleGAN给人工智能AI语音模型配上动态画面(Python3.10)

    借助So-vits我们可以自己训练五花八门的音色模型,然后复刻想要欣赏的任意歌曲,实现点歌自由,但有时候却又总觉得少了点什么,没错,缺少了画面,只闻其声,却不见其人,本次我们让AI川普的歌声和他伟岸的形象同时出现,基于PaddleGAN构建“靓声靓影”的“懂王”。    PaddlePaddle是百度开源的深度学习框架,其功能包罗万象,总计覆盖文本、图像、视频三大领域40个模型,可谓是在深度学习领域无所不窥。    Paddle......

声音好听,颜值能打,基于PaddleGAN给人工智能AI语音模型配上动态画面(Python3.10)

云端炼丹,算力白嫖,基于云端GPU(Colab)使用So-vits库制作AI特朗普演唱《国际歌》

    人工智能AI技术早已深入到人们生活的每一个角落,君不见AI孙燕姿的歌声此起彼伏,不绝于耳,但并不是每个人都拥有一块N卡,没有GPU的日子总是不好过的,但是没关系,山人有妙计,本次我们基于Google的Colab免费云端服务器来搭建深度学习环境,制作AI特朗普,让他高唱《国际歌》。    Colab(全名Colaboratory ),它是Google公司的一款基于云端的基础免费服务器产品,可以在B端,也就是浏览器里面编写和执行Python代码,非常方......

云端炼丹,算力白嫖,基于云端GPU(Colab)使用So-vits库制作AI特朗普演唱《国际歌》

民谣女神唱流行,基于AI人工智能so-vits库训练自己的音色模型(叶蓓/Python3.10)

    流行天后孙燕姿的音色固然是极好的,但是目前全网都是她的声音复刻,听多了难免会有些审美疲劳,在网络上检索了一圈,还没有发现民谣歌手的音色模型,人就是这样,得不到的永远在骚动,本次我们自己构建训练集,来打造自己的音色模型,让民谣女神来唱流行歌曲,要多带劲就有多带劲。    构建训练集    训练集是指用于训练神经网络模型的数据集合。这个数据集通常由大量的输入和对应的输出组成,神经网络模型通过学习输入和输出之间的关系来进行训练,并且在......

民谣女神唱流行,基于AI人工智能so-vits库训练自己的音色模型(叶蓓/Python3.10)

AI天后,在线飙歌,人工智能AI孙燕姿模型应用实践,复刻《遥远的歌》,原唱晴子(Python3.10)

    忽如一夜春风来,亚洲天后孙燕姿独特而柔美的音色再度响彻华语乐坛,只不过这一次,不是因为她出了新专辑,而是人工智能AI技术对于孙燕姿音色的完美复刻,以大江灌浪之势对华语歌坛诸多经典作品进行了翻唱,还原度令人咋舌,如何做到的?    本次我们借助基于Python3.10的开源库so-vits-svc,让亚洲天后孙燕姿帮我们免费演唱喜欢的歌曲,实现点歌自由。    so-vits-svc是基于VITS的开源项目,VITS(Variat......

AI天后,在线飙歌,人工智能AI孙燕姿模型应用实践,复刻《遥远的歌》,原唱晴子(Python3.10)

Python3.10动态修改Windows系统(win10/win11)本地IP地址(静态IP)

    一般情况下,局域网里的终端比如本地服务器设置静态IP的好处是可以有效减少网络连接时间,原因是过程中省略了每次联网后从DHCP服务器获取IP地址的流程,缺点是容易引发IP地址的冲突,当然,还有操作层面的繁琐,如果想要切换静态IP地址,就得去网络连接设置中手动操作,本次我们使用Python3.10动态地修改电脑的静态IP地址。    获取多网卡配置    一个网卡对应一个静态IP地址,但机器上未必只有一个网卡,所以如果想动态切换,必......

Python3.10动态修改Windows系统(win10/win11)本地IP地址(静态IP)

极速进化,光速转录,C++版本人工智能实时语音转文字(字幕/语音识别)Whisper.cpp实践

    业界良心OpenAI开源的Whisper模型是开源语音转文字领域的执牛耳者,白璧微瑕之处在于无法通过苹果M芯片优化转录效率,Whisper.cpp 则是 Whisper 模型的 C/C++ 移植版本,它具有无依赖项、内存使用量低等特点,重要的是增加了 Core ML 支持,完美适配苹果M系列芯片。    Whisper.cpp的张量运算符针对苹果M芯片的 CPU 进行了大量优化,根据计算大小,使用 Arm Neon SIMD instrisics ......

极速进化,光速转录,C++版本人工智能实时语音转文字(字幕/语音识别)Whisper.cpp实践

人工智能AI图像风格迁移(StyleTransfer),基于双层ControlNet(Python3.10)

    图像风格迁移(Style Transfer)是一种计算机视觉技术,旨在将一幅图像的风格应用到另一幅图像上,从而生成一幅新图像,该新图像结合了两幅原始图像的特点,目的是达到一种风格化叠加的效果,本次我们使用Stable-Diffusion结合ControlNet来实现图像风格迁移效果。    安装ControlNet插件    首先确保本地已经安装并且配置好了Stable-Diffusion-Webui服务,关于Stable-Di......

人工智能AI图像风格迁移(StyleTransfer),基于双层ControlNet(Python3.10)

任务拆解,悠然自得,自动版本的ChatGPT,AutoGPT自动人工智能AI任务实践(Python3.10)

    当我们使用ChatGPT完成某些工作的时候,往往需要多轮对话,比如让ChatGPT分析、翻译、总结一篇网上的文章或者文档,再将总结的结果以文本的形式存储在本地。过程中免不了要和ChatGPT“折冲樽俎”一番,事实上,这个“交涉”的过程也可以自动化,AutoGPT可以帮助我们自动拆解任务,没错,程序能做到的事情,人类绝不亲力亲为。    我们唯一需要做的,就是告诉AutoGPT一个任务目标,AutoGPT会自动根据任务目标将任务拆解成一个个的小任务,......

任务拆解,悠然自得,自动版本的ChatGPT,AutoGPT自动人工智能AI任务实践(Python3.10)

人工智能AI库Spleeter免费人声和背景音乐分离实践(Python3.10)

    在视频剪辑工作中,假设我们拿到了一段电影或者电视剧素材,如果直接在剪辑的视频中播放可能会遭遇版权问题,大部分情况需要分离其中的人声和背景音乐,随后替换背景音乐进行二次创作,人工智能AI库Spleeter可以帮我们完成大部分素材的人声和背景音乐的分离流程。    Spleeter的模型源来自最大的音乐网站Deezer,底层基于深度学习框架Tensorflow,它可以通过模型识别出素材中的背景音乐素材,从而判断出哪些是背景音乐,哪些是外部人声。&nbs......

人工智能AI库Spleeter免费人声和背景音乐分离实践(Python3.10)

颜值即正义,献礼就业季,打造多颜色多字体双飞翼布局技术简历模板(Resume)

    一年好景君须记,最是橙黄橘绿时。金三银四,秣马厉兵,没有一个好看的简历模板怎么行?无论是网上随便下载还是花钱买,都是一律千篇的老式模版,平平无奇,味同嚼蜡,没错,蜡都要沿着嘴角流下来了。本次我们基于Html和Css3打造一款独立实现的高颜值简历模板,就像看岛国的爱情片儿一样,也许你会找自己喜欢的主题和类型,但最终,还是要看脸。    身无彩蝶双飞翼    传统简历基本上是由上自下的单体布局方案,本次我们采用双飞翼布局,让简历内容......

颜值即正义,献礼就业季,打造多颜色多字体双飞翼布局技术简历模板(Resume)

事实胜于雄辩,苹果MacOs能不能玩儿机器/深度(ml/dl)学习(Python3.10/Tensorflow2)

    坊间有传MacOs系统不适合机器(ml)学习和深度(dl)学习,这是板上钉钉的刻板印象,就好像有人说女生不适合编程一样的离谱。现而今,无论是Pytorch框架的MPS模式,还是最新的Tensorflow2框架,都已经可以在M1/M2芯片的Mac系统中毫无桎梏地使用GPU显卡设备,本次我们来分享如何在苹果MacOS系统上安装和配置Tensorflow2框架(CPU/GPU)。    Tensorflow2深度学习环境安装和配置   ......

事实胜于雄辩,苹果MacOs能不能玩儿机器/深度(ml/dl)学习(Python3.10/Tensorflow2)

成为钢铁侠!只需一块RTX3090,微软开源贾维斯(J.A.R.V.I.S.)人工智能AI助理系统

    梦想照进现实,微软果然不愧是微软,开源了贾维斯(J.A.R.V.I.S.)人工智能助理系统,贾维斯(jarvis)全称为Just A Rather Very Intelligent System(只是一个相当聪明的人工智能系统),它可以帮助钢铁侠托尼斯塔克完成各种任务和挑战,包括控制和管理托尼的机甲装备,提供实时情报和数据分析,帮助托尼做出决策等等。    如今,我们也可以拥有自己的贾维斯人工智能助理,成本仅仅是一块RTX3090显卡。 ......

成为钢铁侠!只需一块RTX3090,微软开源贾维斯(J.A.R.V.I.S.)人工智能AI助理系统

某公司技术经理媚上欺下,打工人应怼尽怼,嘤其鸣兮,求其友声!

    最近的事情大家都晓得了,某公司技术经理媚上欺下,打工人应怼尽怼,不亦快哉!不亦壮哉!所谓媚上者必欺下!古人诚不我欺!技术经理者,公然在聊天群里大玩职场PUA,气焰嚣张,有恃无恐,最终引发众怒,嘿嘿,技术经理,团队领导,原来团队领导这四个字是这么用的:奴媚显达、构陷下属,人文具损、逢迎上意、傲然下欺,装腔作势、极尽投机,父他人之父、慷他人之慨……如此者,可谓“团队领导”也。    功其利也“有用吗”?    中国的所谓“传统文化”......

某公司技术经理媚上欺下,打工人应怼尽怼,嘤其鸣兮,求其友声!

读破万卷,神交古人,突破ChatGPT4096的Token限制,llama_index建立自己的垂直领域资料人工智能助理

    ChatGPT的泛用性极高,上知天文,下通地理,参考古今,博稽中外,几乎无所不知,无所不晓。但如果涉及垂直领域的专业知识点,ChatGPT难免也会有语焉不详,闪烁其词的毛病,本次我们将特定领域的学习材料“喂”给ChatGPT,让它“学习”后再来回答专业问题。    专业领域语料问题    所谓专业领域语料问题,可以理解为特定范围内的知识图谱,也就是给GPT提供前置的检索维度,举个例子,大家都读过鲁迅的名篇《从百草园到三味书屋》,......

读破万卷,神交古人,突破ChatGPT4096的Token限制,llama_index建立自己的垂直领域资料人工智能助理

好饭不怕晚,Google基于人工智能AI大语言对话模型Bard测试和API调用(Python3.10)

    谷歌(Google)作为开源过著名深度学习框架Tensorflow的超级大厂,是人工智能领域一股不可忽视的中坚力量,旗下新产品Bard已经公布测试了一段时间,毁誉参半,很多人把Google的Bard和OpenAI的ChatGPT进行对比,Google Bard在ChatGPT面前似乎有些技不如人。    事实上,Google Bard并非对标ChatGPT的产品,Bard是基于LaMDA模型对话而进行构建的,Bard旨在构建一个对话式的AI系统,使......

好饭不怕晚,Google基于人工智能AI大语言对话模型Bard测试和API调用(Python3.10)

构建基于深度学习神经网络协同过滤模型(NCF)的视频推荐系统(Python3.10/Tensorflow2.11)

    毋庸讳言,和传统架构(BS开发/CS开发)相比,人工智能技术确实有一定的基础门槛,它注定不是大众化,普适化的东西。但也不能否认,人工智能技术也具备像传统架构一样“套路化”的流程,也就是说,我们大可不必自己手动构建基于神经网络的机器学习系统,直接使用深度学习框架反而更加简单,深度学习可以帮助我们自动地从原始数据中提取特征,不需要手动选择和提取特征。    之前我们手动构建了一个小型的神经网络,解决了机器学习的分类问题,本次我们利用深度学习框架Tens......

构建基于深度学习神经网络协同过滤模型(NCF)的视频推荐系统(Python3.10/Tensorflow2.11)

动手造轮子自己实现人工智能神经网络(ANN),解决鸢尾花分类问题Golang1.18实现

    人工智能神经网络( Artificial Neural Network,又称为ANN)是一种由人工神经元组成的网络结构,神经网络结构是所有机器学习的基本结构,换句话说,无论是深度学习还是强化学习都是基于神经网络结构进行构建。关于人工神经元,请参见:人工智能机器学习底层原理剖析,人造神经元,您一定能看懂,通俗解释把AI“黑话”转化为“白话文”。    机器学习可以解决什么问题    机器学习可以帮助我们解决两大类问题:回归问题和分......

动手造轮子自己实现人工智能神经网络(ANN),解决鸢尾花分类问题Golang1.18实现

人工智能机器学习底层原理剖析,人造神经元,您一定能看懂,通俗解释把AI“黑话”转化为“白话文”

    按照固有思维方式,人们总以为人工智能是一个莫测高深的行业,这个行业的人都是高智商人群,无论是写文章还是和人讲话,总是讳莫如深,接着就是蹦出一些“高级”词汇,什么“神经网络”,什么“卷积神经”之类,教人半懂不懂的。尤其ChatGPT的风靡一时,更加“神话”了这个行业,用鲁迅先生形容诸葛武侯的话来讲:“多智而近妖”。    事实上,根据二八定理,和别的行业一样,人工智能行业内真正顶尖的天才也就是20%,他们具备真正的行业颠覆能力,可以搞出像ChatGP......

人工智能机器学习底层原理剖析,人造神经元,您一定能看懂,通俗解释把AI“黑话”转化为“白话文”

本地推理,单机运行,MacM1芯片系统基于大语言模型C++版本LLaMA部署“本地版”的ChatGPT

    OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿、130亿、330亿和650亿这4种参数规模的模型,参数是指神经网络中的权重和偏置等可调整的变量,用于训练和优化神经网络的性能,70亿意味着神经网络中有70亿个参数,由此类推。    在一些大型神经网络中,每个参数需要使用32位或64位浮点数进行存储,这意味着每个参数需要......

本地推理,单机运行,MacM1芯片系统基于大语言模型C++版本LLaMA部署“本地版”的ChatGPT