版本

Bert-vits2-v2.2新版本本地训练推理整合包(原神八重神子英文模型miko)

    近日,Bert-vits2-v2.2如约更新,该新版本v2.2主要把Emotion 模型换用CLAP多模态模型,推理支持输入text prompt提示词和audio prompt提示语音来进行引导风格化合成,让推理音色更具情感特色,并且推出了新的预处理webuI,操作上更加亲民和接地气。    更多情报请参见Bert-vits2官网:https://github.com/fishaudio/Bert-VITS2/releases/tag/v2.2&......

Bert-vits2-v2.2新版本本地训练推理整合包(原神八重神子英文模型miko)

Bert-vits2新版本V2.1英文模型本地训练以及中英文混合推理(mix)

    中英文混合输出是文本转语音(TTS)项目中很常见的需求场景,尤其在技术文章或者技术视频领域里,其中文文本中一定会夹杂着海量的英文单词,我们当然不希望AI口播只会念中文,Bert-vits2老版本(2.0以下版本)并不支持英文训练和推理,但更新了底模之后,V2.0以上版本支持了中英文混合推理(mix)模式。    还是以霉霉为例子:https://www.bilibili.com/video/BV1bB4y1R7Nu/    截取......

Bert-vits2新版本V2.1英文模型本地训练以及中英文混合推理(mix)

本地训练,开箱可用,Bert-VITS2 V2.0.2版本本地基于现有数据集训练(原神刻晴)

    按照固有思维方式,深度学习的训练环节应该在云端,毕竟本地硬件条件有限。但事实上,在语音识别和自然语言处理层面,即使相对较少的数据量也可以训练出高性能的模型,对于预算有限的同学们来说,也没必要花冤枉钱上“云端”了,本次我们来演示如何在本地训练Bert-VITS2 V2.0.2模型。    Bert-VITS2 V2.0.2基于现有数据集    目前Bert-VITS2 V2.0.2大体上有两种训练方式,第一种是基于现有数据集,即原......

本地训练,开箱可用,Bert-VITS2 V2.0.2版本本地基于现有数据集训练(原神刻晴)

极速进化,光速转录,C++版本人工智能实时语音转文字(字幕/语音识别)Whisper.cpp实践

    业界良心OpenAI开源的Whisper模型是开源语音转文字领域的执牛耳者,白璧微瑕之处在于无法通过苹果M芯片优化转录效率,Whisper.cpp 则是 Whisper 模型的 C/C++ 移植版本,它具有无依赖项、内存使用量低等特点,重要的是增加了 Core ML 支持,完美适配苹果M系列芯片。    Whisper.cpp的张量运算符针对苹果M芯片的 CPU 进行了大量优化,根据计算大小,使用 Arm Neon SIMD instrisics ......

极速进化,光速转录,C++版本人工智能实时语音转文字(字幕/语音识别)Whisper.cpp实践

任务拆解,悠然自得,自动版本的ChatGPT,AutoGPT自动人工智能AI任务实践(Python3.10)

    当我们使用ChatGPT完成某些工作的时候,往往需要多轮对话,比如让ChatGPT分析、翻译、总结一篇网上的文章或者文档,再将总结的结果以文本的形式存储在本地。过程中免不了要和ChatGPT“折冲樽俎”一番,事实上,这个“交涉”的过程也可以自动化,AutoGPT可以帮助我们自动拆解任务,没错,程序能做到的事情,人类绝不亲力亲为。    我们唯一需要做的,就是告诉AutoGPT一个任务目标,AutoGPT会自动根据任务目标将任务拆解成一个个的小任务,......

任务拆解,悠然自得,自动版本的ChatGPT,AutoGPT自动人工智能AI任务实践(Python3.10)

本地推理,单机运行,MacM1芯片系统基于大语言模型C++版本LLaMA部署“本地版”的ChatGPT

    OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿、130亿、330亿和650亿这4种参数规模的模型,参数是指神经网络中的权重和偏置等可调整的变量,用于训练和优化神经网络的性能,70亿意味着神经网络中有70亿个参数,由此类推。    在一些大型神经网络中,每个参数需要使用32位或64位浮点数进行存储,这意味着每个参数需要......

本地推理,单机运行,MacM1芯片系统基于大语言模型C++版本LLaMA部署“本地版”的ChatGPT

笔精墨妙,妙手丹青,微软开源可视化版本的ChatGPT:Visual ChatGPT,人工智能AI聊天发图片,Python3.10实现

    说时迟那时快,微软第一时间发布开源库Visual ChatGPT,把 ChatGPT 的人工智能AI能力和 Stable Diffusion以及ControlNet进行了整合。常常被互联网人挂在嘴边的“赋能”一词,几乎已经变成了笑话,但这回,微软玩了一次真真正正的AI“赋能”,彻底打通了人工智能“闭环”。    配置Visual ChatGPT环境    老规矩,运行Git命令拉取Visual ChatGPT项目:gi......

笔精墨妙,妙手丹青,微软开源可视化版本的ChatGPT:Visual ChatGPT,人工智能AI聊天发图片,Python3.10实现

基于NOSTR协议的“公有制”版本的Twitter,去中心化社交软件Damus用后感,一个极端走向另一个极端

    最近,一个幽灵,Web3的幽灵,在网络游荡,它叫Damus,这玩意诠释了什么叫做病毒式营销,滑稽的是,一个Web3产品却在Web2的产品链上疯狂传销,各方大佬纷纷为其背书,到底发生了什么?Damus的葫芦里,卖的是什么药?    注册和简单实用    很少有什么产品在用户注册环节会有什么噱头,但Damus确实出其不意,它抛开了传统的Web3产品“区块链钱包先行”的策略,直接一键式生成秘钥对,没有了任何门槛,即使是对Web3完全没......

基于NOSTR协议的“公有制”版本的Twitter,去中心化社交软件Damus用后感,一个极端走向另一个极端

旧酒换新瓶,新版M1/M2芯片Macos系统(Ventura)安装古早版本Python2.7(Python2.x)

    向下兼容特性是软件开发系统的一个重要指标,它是指一个新的系统或者软件能够与旧的系统或软件兼容并正常运行。这意味着旧系统或软件可以在新系统或软件中使用,而不会出现问题。向下兼容对于提高软件或系统的可用性非常重要,因为它允许用户在不更换旧系统或软件的情况下使用新系统或软件。    我们知道MacOS系统从Monterey12.3版本起就移除了系统内置的Python2,更不消说最新的Ventura13.1了,但有时候我们依然需要古早版本的Python2.......

旧酒换新瓶,新版M1/M2芯片Macos系统(Ventura)安装古早版本Python2.7(Python2.x)

一代版本一代神:利用Docker在Win10系统极速体验Django3.1真实异步(Async)任务

    就在去年(2019年),Django官方发布3.0版本,内核升级宣布支持Asgi,这一重磅消息让无数后台研发人员欢呼雀跃,弹冠相庆。大喜过望之下,小伙伴们兴奋的开箱试用,结果却让人大跌眼镜:非但说好的内部集成Websocket没有出现,就连原生的异步通信功能也只是个壳子,内部并未实现,很明显的换汤不换药,这让不少人转身投入了FastAPI的怀抱。不过一年之后,今天8月,Django3.1版本姗姗来迟,这个新版本终于一代封神,不仅支持原生的异步视图,同时也支持异步中间件......

一代版本一代神:利用Docker在Win10系统极速体验Django3.1真实异步(Async)任务

Flask最新版本的中文翻译手册

一个最小的应用一个最小的 Flask 应用如下:from flask import Flaskapp = Flask(__name__)@app.route('/')def hello_world():    return 'Hello, World!'  Flask作为一个经典的轻量级框架无论在国外还是国内都十分流行,这里记录一下新版的中文翻译手册,留作备用  https://dormousehole.readthedocs.io/en/latest/quickstart.......

Mac上,python多版本共存(非切换)

最近需求是要抓取线上视频,要用到you-get,一看wiki,干,要用到3.0,一直是2.7的忠实拥趸,又不想来回切换版本太麻烦,能不能共存呢?答案当然是可以啦,命令如下,以后想用3.0,直接在命令行下打/python3就可以啦,美滋滋 # wget https://www.python.org/ftp/python/3.7.3/Python-3.7.3.tgz # mkdir /usr/local/python3 # tar -zxvf......