vits2

如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face

    Hugging Face是一个机器学习(ML)和数据科学平台和社区,帮助用户构建、部署和训练机器学习模型。它提供基础设施,用于在实时应用中演示、运行和部署人工智能(AI)。用户还可以浏览其他用户上传的模型和数据集。Hugging Face通常被称为机器学习界的GitHub,因为它让开发人员公开分享和测试他们所训练的模型。    本次分享如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face。    本......

如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face

首次引入大模型!Bert-vits2-Extra中文特化版40秒素材复刻巫师3叶奈法

    Bert-vits2项目又更新了,更新了一个新的分支:中文特化,所谓中文特化,即针对中文音色的特殊优化版本,纯中文底模效果百尺竿头更进一步,同时首次引入了大模型,使用国产IDEA-CCNL/Erlangshen-MegatronBert-1.3B大模型作为Bert特征提取,基本上完全解决了发音的bad case,同时在情感表达方面有大幅提升,可以作为先前V1.0.1纯中文版本更好的替代。    更多情报请参见Bert-vits2项目官网:https......

首次引入大模型!Bert-vits2-Extra中文特化版40秒素材复刻巫师3叶奈法

Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)

    对于深度学习初学者来说,JupyterNoteBook的脚本运行形式显然更加友好,依托Python语言的跨平台特性,JupyterNoteBook既可以在本地线下环境运行,也可以在线上服务器上运行。GoogleColab作为免费GPU算力平台的执牛耳者,更是让JupyterNoteBook的脚本运行形式如虎添翼。    本次我们利用Bert-vits2的最终版Bert-vits2-v2.3和JupyterNoteBook的脚本来复刻生化危机6的人气......

Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)

Bert-vits2-2.3-Final,Bert-vits2最终版一键整合包(复刻生化危机艾达王)

    近日,Bert-vits2发布了最新的版本2.3-final,意为最终版,修复了一些已知的bug,添加基于 WavLM 的 Discriminator(来源于 StyleTTS2),令人意外的是,因情感控制效果不佳,去除了 CLAP情感模型,换成了相对简单的 BERT 融合语义方式。    事实上,经过2.2版本的测试,CLAP情感模型的效果还是不错的,关于2.2版本,请移步:Bert-vits2-v2.2新版本本地训练推理整合包(原神八重神子英文......

Bert-vits2-2.3-Final,Bert-vits2最终版一键整合包(复刻生化危机艾达王)

云端开炉,线上训练,Bert-vits2-v2.2云端线上训练和推理实践(基于GoogleColab)

    假如我们一定要说深度学习入门会有一定的门槛,那么设备成本是一个无法避开的话题。深度学习模型通常需要大量的计算资源来进行训练和推理。较大规模的深度学习模型和复杂的数据集需要更高的计算能力才能进行有效的训练。因此,训练深度学习模型可能需要使用高性能的计算设备,如图形处理器(GPU)或专用的深度学习处理器(如TPU),这让很多本地没有N卡的同学望而却步。    GoogleColab是由Google提供的一种基于云的免费Jupyter笔记本环境。它可以帮......

云端开炉,线上训练,Bert-vits2-v2.2云端线上训练和推理实践(基于GoogleColab)

Bert-vits2-v2.2新版本本地训练推理整合包(原神八重神子英文模型miko)

    近日,Bert-vits2-v2.2如约更新,该新版本v2.2主要把Emotion 模型换用CLAP多模态模型,推理支持输入text prompt提示词和audio prompt提示语音来进行引导风格化合成,让推理音色更具情感特色,并且推出了新的预处理webuI,操作上更加亲民和接地气。    更多情报请参见Bert-vits2官网:https://github.com/fishaudio/Bert-VITS2/releases/tag/v2.2&......

Bert-vits2-v2.2新版本本地训练推理整合包(原神八重神子英文模型miko)

Bert-vits2新版本V2.1英文模型本地训练以及中英文混合推理(mix)

    中英文混合输出是文本转语音(TTS)项目中很常见的需求场景,尤其在技术文章或者技术视频领域里,其中文文本中一定会夹杂着海量的英文单词,我们当然不希望AI口播只会念中文,Bert-vits2老版本(2.0以下版本)并不支持英文训练和推理,但更新了底模之后,V2.0以上版本支持了中英文混合推理(mix)模式。    还是以霉霉为例子:https://www.bilibili.com/video/BV1bB4y1R7Nu/    截取......

Bert-vits2新版本V2.1英文模型本地训练以及中英文混合推理(mix)

本地训练,开箱可用,Bert-VITS2 V2.0.2版本本地基于现有数据集训练(原神刻晴)

    按照固有思维方式,深度学习的训练环节应该在云端,毕竟本地硬件条件有限。但事实上,在语音识别和自然语言处理层面,即使相对较少的数据量也可以训练出高性能的模型,对于预算有限的同学们来说,也没必要花冤枉钱上“云端”了,本次我们来演示如何在本地训练Bert-VITS2 V2.0.2模型。    Bert-VITS2 V2.0.2基于现有数据集    目前Bert-VITS2 V2.0.2大体上有两种训练方式,第一种是基于现有数据集,即原......

本地训练,开箱可用,Bert-VITS2 V2.0.2版本本地基于现有数据集训练(原神刻晴)

栩栩如生,音色克隆,Bert-vits2文字转语音打造鬼畜视频实践(Python3.10)

    诸公可知目前最牛逼的TTS免费开源项目是哪一个?没错,是Bert-vits2,没有之一。它是在本来已经极其强大的Vits项目中融入了Bert大模型,基本上解决了VITS的语气韵律问题,在效果非常出色的情况下训练的成本开销普通人也完全可以接受。    BERT的核心思想是通过在大规模文本语料上进行无监督预训练,学习到通用的语言表示,然后将这些表示用于下游任务的微调。相比传统的基于词嵌入的模型,BERT引入了双向上下文信息的建模,使得模型能够更好地理解......

栩栩如生,音色克隆,Bert-vits2文字转语音打造鬼畜视频实践(Python3.10)