Python算法之动态规划(Dynamic Programming)解析:二维矩阵中的醉汉(魔改版leetcode出界的路径数)
现在很多互联网企业学聪明了,知道应聘者有目的性的刷Leetcode原题,用来应付算法题面试,所以开始对这些题进行“魔改”,比如北京某电商平台的这道题:
有一个正方形的岛,使用二维方形矩阵表示,岛上有一个醉汉,每一步可以往上下左右四个方向之一移动一格,如果超出矩阵范围他就死了,假设每一步的方向都是随机的(因为他是醉的),请计算n步以后他还活着的概率。
例如:输入矩阵大小2*2,起点(0,0),随机走出一步 n = 1
输出0.5 也就是有一半的几率还活着
例如:输入矩阵大小3*3,起点(1,1),随机走出一步 n = 1
输出1 也就是百分之百还活着
乍一看有点懵,但是提取关键字:二维矩阵、上下左右四个方向、矩阵范围、n步,有没有感到很熟悉?刷过Leetcode的同学一定已经联想到了Leetcode原题第576题:出界的路径数,难度等级为中等。
给定一个 m × n 的网格和一个球。球的起始坐标为 (i,j) ,你可以将球移到相邻的单元格内,或者往上、下、左、右四个方向上移动使球穿过网格边界。但是,你最多可以移动 N 次。找出可以将球移出边界的路径数量。答案可能非常大,返回 结果 mod 109 + 7 的值。
和魔改版的题联系起来,所谓醉汉“死了”,其实就是移出边界,而每走一步都会有四种可能,所以所谓的“存活率”也就是当我们算出移出边界的路径数量之后,再除以方向的基数4,就可以算出“存活率”,相反也可以推算“死亡率”,归根结底,魔改版题的题眼还是算出移出边界的路径数,并不是最后问的“存活率”问题,这题只是用了一个并不是很讲究的障眼法,很有可能是该电商平台老板让手下的某个研发出道算法题招人用,而该研发已经被需求搞的晕头转向,无奈之下随便从leetcode复制了一道出来,随便改了改。
至于解法,下意识想到并且非常好理解的解法就是利用BFS(Breadth First Search 广度优先),因为醉汉最多只能移动N次,我们只要bfs依次遍历如果发现出界,就代表死亡,进行累加1,当bfs的深度大于N的时候break结束。理论上是没有任何问题。
import collections
def how_likely_alive(m,n,N,i,j):
mod = 10**9 + 7
Q = collections.deque([(i,j,0)])
res = 0
while Q:
x,y,step = Q.popleft()
if step > N: break
if 0<=x<m and 0<=y<n:
Q.append((x+1,y,step+1))
Q.append((x-1,y,step+1))
Q.append((x,y+1,step+1))
Q.append((x,y-1,step+1))
else:
res += 1
num = res % mod
if num == 0:
return 1
else:
return num / 4
print(how_likely_alive(2,2,1,0,0))
一般情况下,如果该岗位的技术要求并不高,使用bfs基本就算过关了,但是如果面试官想来一次压力面试(所谓压力面试就是想探探你的底),看看你的极限在哪里,就会要求你用效率更高的算法来解题。(这里需要简单分辨一下压力面试还是故意刁难,压力面试如果不会的话,礼貌询问就能拿到答案,而如果连面试官都不知道面试的答案,那肯定就是故意刁难了,也就没有面下去的必要了)。
我们再回到题目中想一想,魔改版题目并没有定义醉后随机走的步数N的范围,假设N的取值范围达到了50,我们对任意一个坐标点bfs有四个方向进行遍历,同时考虑往回走的可能性,那么复杂度达到了N的四倍,这个效率显然不会令人满意,所以当N相对小的情况下,比如只走1步,bfs是最优解,而范围过大就需要考虑dp了。
dp(Dynamic Programming)算法即是业界大名鼎鼎的动态规划算法了,其核心思路是把一个复杂的大问题拆成若干个子问题,通过解决子问题来逐步解决大问题,是不是和分治法有点像?关于分治算法可以参考这篇文章:当我们谈论算法我们在谈论什么:由疫情核酸检测想到的分治算法(Divide-and-Conquer),但是和分治法有区别的地方是,使用动态规划思想有个前提:当且仅当每个子问题都是离散的(即每个子问题都不依赖于其他子问题时),才能使用动态规划。
再次回到题目,假设这个醉汉在第 N 步到达 (mi, nj) 位置有 dp[N][mi][nj] 种路径,可以假设一下当前状态如何从上一步移动中得来。其实就是上下左右四个方向移动过来的,而移动步数则是 N-1。
def how_likely_alive(m, n, N, i, j):
tmp=[[[0 for i in range(n)] for j in range(m)] for k in range(N+1)]
for k in range(1,N+1):
for p in range(m):
for q in range(n):
if 0==p:
up=1
else:
up=tmp[k-1][p-1][q]
if m-1==p:
down=1
else:
down=tmp[k-1][p+1][q]
if 0==q:
left=1
else:
left=tmp[k-1][p][q-1]
if n-1==q:
right=1
else:
right=tmp[k-1][p][q+1]
tmp[k][p][q]=(up+down+left+right)%1000000007
num = tmp[N][i][j]
if num == 0:
return 1
else:
return num / 4
return num
print(how_likely_alive(2,2,1,0,0))
结语:Leetcode算法题浩如烟海,想要每一道题都了如指掌,个人感觉难度不小,但是从这道二维矩阵中的醉汉来看,企业就算想要“魔改”,也是万变不离其宗,多多少少都有迹可循,所以我们在刷题的过程中,应该本着宁缺毋滥的原则,真实的掌握算法核心思想,才能够做到举一反三、百战不殆。