什么是 MongoDB ?

MongoDB 是一个介于关系数据库和非关系数据库之间的开源产品,是最接近于关系型数据库的 NoSQL 数据库。它在轻量级JSON 交换基础之上进行了扩展,即称为 BSON 的方式来描述其无结构化的数据类型。尽管如此它同样可以存储较为复杂的数据类型。它和上一篇文章讲到的Redis有异曲同工之妙。虽然两者均为 NoSQL ,但是 MongoDB 相对于 Redis 而言,MongoDB 更像是传统的数据库。早些年我们是先有了 Relation Database (关系型数据库),然后出现了很多很复杂的query ,里面用到了很多嵌套,很多 join 操作。所以在设计数据库的时候,我们也考虑到了如何应用他们的关系,使得写 query 可以使 database 效率达到最高。后来人们发现,不是每个系统,都需要如此复杂的关系型数据库。有些简单的网站,比如博客,比如社交网站,完全可以斩断数据库之间的一切关系。这样做带来的好处是,设计数据库变得更加简单,写 query 也变得更加简单。然后,query 消耗的时间可能也会变少。因为 query 简单了,少了许多消耗资源的 join 操作,速度自然会上去。正如所说的, query 简单了,很有以前 MySQL 可以找到的东西,现在关系没了,通过 Mongo 找不到了。我们只能将几组数据都抓到本地,然后在本地做 join ,所以在这点上可能会消耗很多资源。这里我们可以发现。如何选择数据库,完全取决于你所需要处理的数据的模型,即 Data Model 。如果它们之间,关系错综复杂,千丝万缕,这个时候 MySQL 一定是首选。如果他们的关系并不是那么密切,那么, NoSQL 将会是利器。

MongoDB 和 Redis 一样均为 key-value 存储系统,它具有以下特点:

面向集合存储,易存储对象类型的数据。 模式自由。 支持动态查询。 支持完全索引,包含内部对象。 支持查询。 支持复制和故障恢复。 使用高效的二进制数据存储,包括大型对象(如视频等)。 自动处理碎片,以支持云计算层次的扩展性 支持 Python , PHP , Ruby , Java , C , C# , Javascript ,Perl 及 C++ 语言的驱动程序,社区中也提供了对 Erlang 及 .NET 等平台的驱动程序。 文件存储格式为 BSON (一种 JSON 的扩展)。 可通过网络访问。

MongoDB 与 MySQL 性能比较

像 MySQL 一样, MongoDB 提供了丰富的远远超出了简单的键值存储中提供的功能和功能。 MongoDB 具有查询语言,功能强大的辅助索引(包括文本搜索和地理空间),数据分析功能强大的聚合框架等。相比使用关系数据库而言,使用MongoDB ,您还可以使用如下表所示的这些功能,跨越更多样化的数据类型和数据规模。

MySQLMongoDB丰富的数据模型否是动态 Schema否是数据类型是是数据本地化否是字段更新是是易于编程否是复杂事务是否审计是是自动分片否是

MySQL 中的许多概念在 MongoDB 中具有相近的类比。本表概述了每个系统中的一些常见概念。

MySQLMongoDB表集合行文档列字段joins嵌入文档或者链接

MongoDB应用范围和限制

MongoDB 的主要目标是在 key-value (键/值)存储方式(提供了高性能和高度伸缩性)以及传统的 RDBMS 系统(丰富的功能)架起一座桥梁,集两者的优势于一身。 MongoDB 适用范围如下:

网站数据: Mongo 非常适合实时的插入,更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。 缓存:由于性能很高, Mongo 也适合作为信息基础设施的缓存层。在系统重启之后,由 Mongo 搭建的持久化缓存层可以避免下层的数据源过载。 大尺寸,低价值的数据:使用传统的关系型数据库存储一些数据时可能会比较昂贵,在此之前,很多时候程序员往往会选择传统的文件进行存储。 高伸缩性的场景: Mongo 非常适合由数十或数百台服务器组成的数据库。 Mongo 的路线图中已经包含对 MapReduce 引擎的内置支持。 用于对象及 JSON 数据的存储: Mongo 的 BSON 数据格式非常适合文档化格式的存储及查询。 MongoDB 当然也会有以下场景的限制:

高度事物性的系统:例如银行或会计系统。传统的关系型数据库目前还是更适用于需要大量原子性复杂事务的应用程序。 传统的商业智能应用:针对特定问题的 BI 数据库会对产生高度优化的查询方式。对于此类应用,数据仓库可能是更合适的选择。 需要 SQL 的问题。

results matching ""

    No results matching ""